Arquivo de janeiro \11\UTC 2015

11
jan
15

Imagens inéditas de Eta Carinae

 

Novas imagens e dados sobre Eta Carinae foram liberados no início de 2015. O texto abaixo da NASA foi editado e adaptado para o português brasileiro e pode ser acessado aqui. O vídeo é sensacional e nos faz entender a intrigante dança dos ventos das estrelas A e B do sistema. Meu coração batendo forte…

Eta Carinae e o Homúnculo em imagem do Hubble

Eta Carinae e o Homúnculo, as famosas conchas de gás,o em imagem do Hubble.

Eta Carinae, o sistema estelar mais luminoso e maciço numa distância de até 10.000 anos-luz da Terra, é conhecido por seu comportamento surpreendente, tendo entrado em erupção duas vezes no século 19, por razões que os cientistas ainda não entendem. Um estudo de longo prazo liderado por astrônomos da Goddard Space Flight Center da NASA em Greenbelt, Maryland, usou satélites da NASA, telescópios terrestres e modelagem teórica para produzir o retrato mais abrangente de Eta Carinae até agora. Novas descobertas incluem imagens do Telescópio Espacial Hubble que mostram conchas de gás ionizado com década de idade, distanciando-se da maior estrela a um milhão de milhas por hora, e novos modelos 3-D que revelam características nunca antes vistas de interações das estrelas.

“Estamos começando a entender o estado atual e o ambiente complexo deste objeto notável, mas ainda temos um longo caminho a percorrer para explicar erupções passadas de Eta Carinae ou para prever seu comportamento futuro”, disse Goddard astrofísico Ted Gull, que coordena um grupo de pesquisa que acompanhou a estrela por mais de uma década.

Localizado a cerca de 7.500 anos-luz de distância, na constelação de Carina, Eta Carinae compreende duas estrelas massivas cujas órbitas excêntricas fazem as duas estrelas se aproximarem muito a cada 5,5 anos. Ambas produzem poderosos ventos estelares, que encobrem as estrelas e dificultam os esforços para medir diretamente as suas propriedades. Astrônomos estabeleceram que a estrela primária, mais brilhante e mais fria, tem cerca de 90 vezes a massa do sol e o supera em brilho em 5 milhões de vezes. Já as propriedades de sua companheiro menor, mais quente, são mais controversas. Gull e seus colegas acreditam que a estrela tem cerca de 30 massas solares e emite um milhão de vezes a luz do Sol.

No periastro (momento em que as estrelas ficam mais próximas) as estrelas ficam a 225 milhões de quilômetros de distância, ou como a distância média entre Marte e do sol. Astrônomos observam mudanças dramáticas no sistema durante os meses antes e depois do periastro que incluem erupções de raios-X, seguido por um declínio súbito e subsequente recuperação dessas emissões; o desaparecimento e reaparecimento de estruturas perto as das estrelas, detectadas em comprimentos de onda específicos da luz visível; e até mesmo um jogo de luz e sombra à medida que a menor orbita a primária.

Durante os últimos 11 anos, ao longo de três passagens do periastro o grupo Goddard desenvolveu um modelo baseado em observações de rotina das estrelas usando telescópios terrestres e vários satélites da NASA. “Nós usamos observações passadas para construir uma simulação de computador, o que nos ajudou a prever o que queremos ver durante o próximo ciclo, e então alimentar novas observações de volta para o modelo, para refinar mais isso”, disse Thomas Madura, um Fellow do Programa de Pós-Doutorado na NASA Goddard e um teórico da equipe de Eta Carinae.

De acordo com este modelo, a interação dos dois ventos estelares é responsável por muitas das alterações periódicas observadas no sistema. Os ventos de cada estrela têm marcadamente diferentes propriedades: espesso e lento para a primária, tênue e rápido para a companheira mais quente. O vento que sopra da primária em cerca de um milhão mph e é especialmente denso, levando embora uma massa equivalente a do nosso Sol a cada mil anos. Em contrapartida, o vento da companheira expele cerca de 100 vezes menos material do que a primária, mas até seis vezes mais rápido.

Simulações que foram realizadas por Madura no supercomputador Plêiades no Ames Research Center da NASA revelam a complexidade da interação dos ventos. À medida que a estrela companheira orbita rapidamente em torno da primária, o vento mais rápido esculpe uma cavidade espiral no fluxo da estrela maior. Para visualizar melhor essa interação, Madura converteu as simulações de computador para modelos 3-D digital e fez versões sólidas, utilizando uma impressora consumidor da classe 3-D. Este processo revelou saliências semelhantes a dedos ao longo das bordas da cavidade durante o periastro, características que não tinham sido notadas antes.

“Achamos que estas estruturas são reais e que se formam como resultado de instabilidades no fluxo nos meses em torno da maior aproximação”, disse Madura. “Eu queria fazer cópias 3-D das simulações para melhor visualizá-las, o que acabou por ser muito mais bem sucedido do que eu imaginava.

A equipe detalhou algumas observações importantes que expõem alguns dos funcionamentos internos do sistema. Durante os últimos três periastros, telescópios terrestres no Brasil, Chile, Austrália e Nova Zelândia monitoraram um único comprimento de onda da luz azul emitida por átomos de hélio que perderam um único elétron. De acordo com o modelo, a emissão das faixas de hélio dá pistas sobre os ventos da estrela primária. The Space Imaging Telescope Spectrograph (STIS) a bordo do Hubble, capta um comprimento de onda diferente da luz azul emitida por átomos de ferro que perderam dois elétrons, o que revela para onde o gás da estrela primária é enviado pela intensa luz ultravioleta de sua companheira. Finalmente, raios-X do sistema de transportam informações diretamente da zona de colisão dos ventos, onde os ventos contrários criam ondas de choque que aquecem o gás a centenas de milhões de graus.

Nesta simulação de um supercomputador as estrelas de Eta Carinae são mostradas como pontos pretos. Cores mais claras indicam maiores densidades nos  ventos solares produzidos por cada estrela. Na maior aproximação, o vento rápido da estrela menor cava um túnel na maior.  Cred: NASA's Goddard Space Flight Center/T. Madura
Nesta simulação de um supercomputador
as estrelas de Eta Carinae são mostradas como pontos pretos. Cores mais claras indicam maiores densidades nos ventos solares produzidos por cada estrela. Na maior aproximação, o vento rápido da estrela menor cava um túnel na maior.
Cred: NASA’s Goddard Space Flight Center/T. Madura

“Mudanças nos raios-X são como uma sonda direto da zona de colisão e mostram mudanças na forma como estas estrelas perdem massa”, disse Michael Corcoran, um astrofísico da Associação de Universidades de Pesquisa Espacial sediada em Columbia, Maryland. Ele e seus colegas compararam as emissões dos periastros medidos ao longo dos últimos 20 anos. Em julho de 2014, quando as estrelas foram em direção uma da outra, o Swift observou uma série de explosões que culminaram na mais brilhante emissão de raios-X já vista em Eta Carinae. Isso implica uma mudança na perda de massa por uma das estrelas, mas os raios X por si só não pode determinar de qual delas.

Em 2009, cientistas separaram a luz das estrelas num espectro semelhante a um arco-íris o que revelou a composição química do ambiente, mas o espectro também mostrou estruturas delgadas perto das estrelas, que sugeriram o instrumento poderia ser utilizado para mapear uma região perto do sistema binário em detalhes nunca antes vistos.

Desde dezembro de 2010, a equipe de Gull tem regularmente mapeado uma região centrada no sistema binário através da captura de espectros em 41 locais diferentes. A visão se estende por cerca de 670.000.000 mil km, ou cerca de 4.600 vezes a distância média Terra-Sol.

As imagens resultantes, reveladas pela primeira vez no início de janeiro de 2015, mostram que a emissão de ferro duplamente ionizado vem de uma estrutura gasosa complexa com quase um décimo de ano-luz de diâmetro, que Gull compara ao caranguejo azul de Maryland. Percorrendo as imagens, vastos reservatórios de gás, que representariam as “garras” do caranguejo podem ser vistas ao longo das estrelas com velocidades medidas em cerca de 1,6 milhões kmh. A cada aproximação, uma cavidade forma-se uma cavidade no vento da estrela maior que depois se expande para fora , criando as conchas móveis.

“Essas conchas de gás se estendem ao longo de milhares de vezes a distância entre a Terra e o sol”, explicou Gull. “Ao investigarmos seu passado, descobrimos que as conchas começaram a se mover para longe da estrela primária há cerca de 11 anos ou três periastros atrás, proporcionando-nos uma forma adicional de vislumbrar o que ocorreu no passado recente”.

Formação das conchas durante o periastro. NASA's Goddard Space Flight Center/T. Gull et al.
Formação das conchas durante o periastro. NASA’s Goddard Space Flight Center/T. Gull et al.

Quando as estrelas se aproximam, a companheira fica imersa na parte mais grossa do vento da primária, que absorve a luz UV e impede que a radiação atinja as conchas de gás distantes. Sem essa energia para exitá-lo, o ferro duplamente ionizado deixa de emitir luz e a estrutura de caranguejo desaparece neste comprimento de onda. À medida que a companheira oscila em torno da primária e limpa o vento mais denso,  a luz UV escapa, re-energiza os átomos de ferro nas conchas, e o caranguejo volta.

A seguir o vídeo que sintetiza o texto acima.