Archive for the 'Astrofísica' Category

18
jul
17

Supernova 1987A – 30 anos!

Compartilho com dois queridos amigos Suzy Webb e Ron Knight a paixão por essa Supernova. Essa semana, por ocasião de seus 30 anos, vários artigos foram lançados sobre ela. Tentei compilar as informações aqui e comemorar também.

 

1987 antes e depois da explosão. Imagem de 1987. Crédito NASA

Crédito: Hubble








 

 

 

 

 

Em 24 de  fevereiro de 1987, no topo de uma montanha no Chile, no observatório de Las Campanas, o   operador de telescópio Oscar Duhalde saiu do prédio e ao olhar para o céu que lhe era tão familiar, notou algo diferente na Grande Nuvem de Magalhães (LMC), próxima a nebulosa da Tarântula: era uma estrela brilhante que ele nunca notara antes, sua magnitude no dia era de aproximadamente 4.5, o que a tornava facilmente visível a olho nu.

Na mesma noite, o astrônomo canadense Ian Shelton estava em Las Campanas observando estrelas na Grande Nuvem de Magalhães. Enquanto Shelton estava estudando um placa fotográfica da LMC naquela noite, notou um objeto brilhante que ele inicialmente pensou ser um defeito na placa. Quando ele mostrou a placa para outros astrônomos no observatório, ele percebeu que o objeto era a luz de uma supernova. Duhalde anunciou que também tinha visto o objeto no céu noturno. O objeto acabou por ser Supernova 1987 A ( o A indicando ser o primeiro objeto deste tipo encontrado naquele ano), a supernova mais próxima observada em 400 anos. Shelton tinha que avisar a comunidade astronômica de sua descoberta. Não havia Internet em 1987, então o astrônomo desceu a montanha,  correu à cidade mais próxima e enviou uma mensagem ao Bureau da União Astronômica Internacional para Telegramas Astronômicos, para anunciar sua descoberta. Surgia assim, a primeira supernova estudada com tecnologia de ponta, que inclui , por exemplo, o telescópio Hubble , o Chandra e o observatório Alma.

Os últimos dados desses poderosos telescópios indicam que o SN 1987A passou por uma nova etapa importante. A onda de choque da supernova está indo para além do anel denso de gás produzido no final da vida da estrela quando era uma pré-supernova e o vento da estrela colidiu com um vento mais lento gerado em uma fase anterior da evolução da gigante vermelha . O que está além do anel é mal conhecido no momento, e depende justamente dos detalhes da evolução dessa estrela quando era uma gigante vermelha.

Antes das investigações em curso da SN 1987A, havia pouco que os astrônomos poderiam dizer sobre o impacto das supernovas em suas vizinhanças interestelares.

Sabia-se que as estrelas maciças, as aproximadamente 10 vezes mais do que o sol ou mais,quando ficam sem combustível, não tem mais calor e energia suficientes para lutar contra a força da gravidade. As camadas exteriores da estrela, uma vez sustentadas pelo poder da fusão, então  colapsam para o centro com uma enorme força. O ricochete desse colapso desencadeia uma explosão poderosa que espalha o material no espaço.

Evolução nos debris de 1987A. Crédito: Hubble

Como  a morte de estrelas maciças, os cientistas descobriram que as supernovas têm efeitos de longo alcance sobre suas galáxias domésticas, pois muitas galáxias tem a aparência que tem hoje, em grande parte, por causa das supernovas que ocorreram nelas.

Como sabemos, supernovas estão entre os eventos mais cataclísmicos e luminosos no cosmos. Embora as supernovas marquem a morte das estrelas, elas também desencadeiam o nascimento de novos elementos e a formação de novas moléculas.

Supernovas como a SN 1987A podem agitar o gás circundante e desencadear a formação de novas estrelas e planetas. O gás a partir do qual essas estrelas e planetas se formará será enriquecido com elementos como carbono, nitrogênio, oxigênio e ferro, que são os componentes básicos de toda a vida conhecida. Esses elementos são forjados dentro da estrela pré-supernova e durante a própria explosão de supernova, e depois se dispersaram em sua galáxia hospedeira expandindo remanescentes de supernova. Estudos contínuos de SN 1987A devem dar uma visão única sobre os estágios iniciais desta dispersão.

Observações anteriores com a ALMA verificaram que SN 1987A produziu uma enorme quantidade de poeira. As novas observações fornecem ainda mais detalhes sobre como a supernova produziu esse disco de poeira, bem como o tipo de moléculas encontradas na remanescente.

Segundo os pesquisadores envolvidos no estudo,um dos nossos objetivos era observar SN 1987A procurar por novas moléculas , esperava-se encontrar monóxido de carbono e monóxido de silício, já que tínha-se detectado essas moléculas anteriormente . Os astrônomos, contudo, ficaram surpresos ao encontrar as moléculas de formil (HCO +) e o monóxido de enxofre (SO) anteriormente não detectados.O HCO + é especialmente interessante porque a sua formação requer uma mistura particularmente vigorosa durante a explosão. Uma estrela forja elementos como em camadas de cebola . À medida que uma estrela passa a supernova, essas camadas, antes bem definidas, sofrem uma mixagem violenta, ajudando a criar o ambiente necessário para a formação de moléculas e poeiras.

Remanescente da Supernova 1987A, visto pela ALMA. A área roxa indica emissão de moléculas de SiO. A área amarela é a emissão de moléculas de CO. O anel azul é um dado Hubble que foi expandido artificialmente em 3-D.
Crédito: ALMA (ESO / NAOJ / NRAO); R. Indebetouw; NASA / ESA Hubble

Os astrônomos estimam que cerca de 1 em 1000 átomos de silício da estrela explodida agora é encontrado em moléculas de SiO que flutuam livremente. A esmagadora maioria do silício já foi incorporada em grãos de poeira. Mesmo a pequena quantidade de SiO presente está 100 vezes maior que a prevista pelos modelos de formação de poeira. Essas novas observações ajudarão astrônomos a refinar seus modelos.

Essas observações também acham que dez por cento ou mais do carbono dentro do remanescente está atualmente em moléculas de CO. Apenas alguns em cada milhão de átomos de carbono estão em moléculas de HCO +.

Mesmo que as novas observações do ALMA lançem luz importante sobre o SN 1987A, ainda existem várias questões que permanecem. Exatamente quão abundantes são as moléculas de HCO + e SO? Existem outras moléculas que ainda não foram detectadas? Como a estrutura 3-D da SN 1987A continuará a mudar ao longo do tempo?

Futuras observações de ALMA em diferentes comprimentos de onda também podem ajudar a determinar qual tipo de objeto compacto – uma estrela de pulsar ou de nêutrons – reside no centro do remanescente. A supernova provavelmente criou um desses objetos estelares densos, mas até agora nenhum foi detectado.

Tanto a descobrir. Resta-nos esperar e acompanhar cada novo mistério revelado.

É possível ver a imagem 3D em vídeo neste link 

Crédito:ALMA (ESO/NAOJ/NRAO), R. Indebetouw; NASA/ESA Hubble

 

Fontes:

http://hubblesite.org/news_release/news/2017-08http://www.gea.org.br/historia/1987asupernova1987A.htm

https://public.nrao.edu/news/2017-alma-dust-sn1987a/

08
jul
17

“Como as estrelas podem afetar seus exoplanetas”

No dia 26 de junho de 2017 assisti à palestra: “How stars can affect their exoplanets” proferida por Aline Vidotto, astrofísica brasileira pesquisadora na Universidade de Dublin.

Resultado de imagem para aline vidotto

Desde a primeira detecção de um exoplaneta, essa área vem se desenvolvendo em ritmo alucinante.

Além dos métodos de detecção de planetas que conhecemos:

 – astrometria;

– método da velocidade radial;

– método do trânsito;

– método do pulsar;

– micro lente gravitacional;

-imageamento direto;

o estudo proposto nessa palestra apresenta mais uma forma de detectar a presença de um exoplaneta perto de sua estrela, desta vez pelo efeito que o vento solar e o magnetismo da estrela podem causar ao planeta.

Segundo o estudo, 90% dos planetas detectados até o presente orbitam estrelas com massa de aproximadamente 1.3 massas solares. Assim, a pesquisa se concentra no estudo de estrelas anãs do tipo espectral M.

Ventos solares e exoplanetas

As estrelas perdem massa por meio de seus ventos solares ao longo de toda sua vida. Se temos uma estrela muito massiva, dependendo de sua fase na evolução estelar, a perda de massa pode ser bastante significativa e os ventos são super massivos. Já em estrelas mais frias e de menor massa, o vento é bem menos massivo, fazendo com que a estrela perca muito menos massa e viva muito mais tempo. Mesmo assim, ainda que mais rarefeito,  o momento angular deste vento é suficiente para alterar a evolução rotacional da estrela. À medida que o vento sai da estrela, ele permeia o espaço interplanetário, interagindo com qualquer planeta que encontre pelo caminho. Dependendo da evolução rotacional da estrela, de suas propriedades internas e da evolução de sua atividade magnética, sua interação com o planeta (ou com seu campo magnético, se o planeta tiver,) pode apresentar uma assinatura detectável. 

Representação artística do vento solar interagindo com a magnetosfera do planeta Terra. Credito NASA

A principal ferramenta para o desenvolvimento desta pesquisa é a criação e estudo de mapas da atividade magnética estelares como abaixo.  O estudo e mapeamento desses campos podem determinar que interferência o vento solar exerce em seus planetas e , por outro lado, a presença de planetas pode dar pistas das características do campo magnético e ventos solares da estrela hospedeira.

Mapa topológico do campo magnético da estrela t tauri. Crédito:T.A. Carroll, K.G. Strassmeier, J.B. Rice, and A. Kuenstler

 Ainda há muito a desenvolver sobre o tópico e será interessante acompanhar os próximos passos.

 

02
jul
17

Nova imagem de Betelgeuse

Nós que moramos no hemisfério sul temos o privilégio de poder ver a constelação Orion facilmente no céu. Veja como a constelação pode ser vista nos dois hemisférios na imagem de Babak TafreshiTwoHemispheresOrion

A Alfa Orionis, também conhecida como Betelgeuse, é uma gigante vermelha com aproximadamente 8 milhões de anos,  que está muito perto (astronomicamente falando) de explodir e se transformar numa Supernova. Quando isso ocorrer, nós a veremos brilhar mesmo durante o dia por algum tempo.

Betelgeuse tem 1400 vezes o raio de nosso Sol , isso quer dizer que, se estivesse em nosso Sistema Solar, varreria tudo até a órbita de Júpiter, como podemos ver na ilustração produzida pela Alma.

Beltelgeuse_Solar System

Pois é justamente graças ao Alma (Atacama Large Millimeter/submillimeter Array) que obtivemos a mais detalhada imagem da superfície de Betelgeuse. Imagens assim são muito difíceis de obter devido à grande luminosidade das estrelas, mas a sensibilidade do sistema de detecção da ALMA permite descobertas cada vez mais detalhadas e precisas. Isso ocorre porque, ao contrário de muitos telescópios que observam luz visível, a coleção de antenas que compõem o ALMA detecta comprimentos de onda de rádio, que podem penetrar o gás e o pó que não podem ser detectados no visível.

O VLT (Very Large Telescope) já tinha capturado dados que ajudaram a explicar as tremendas taxas pelas quais Betelgeuse expele gás e poeira e também  uma gigantesca bolha que se espalha em sua superfície. Agora o ALMA conseguiu detectar aumentos de temperatura localizados que tornam a superfície da estrela desigual. Os comprimentos de onda submilimétricos que o ALMA pode detectar são provenientes da cromosfera inferior da estrela e fornecem informações sobre a vida abaixo da superfície da estrela.

É sensacional! Veja abaixo a incrível imagem:

Betelgeuse Alma

 

 

Fontes: ESO, dailymail, space.com

 

11
jan
15

Imagens inéditas de Eta Carinae

 

Novas imagens e dados sobre Eta Carinae foram liberados no início de 2015. O texto abaixo da NASA foi editado e adaptado para o português brasileiro e pode ser acessado aqui. O vídeo é sensacional e nos faz entender a intrigante dança dos ventos das estrelas A e B do sistema. Meu coração batendo forte…

Eta Carinae e o Homúnculo em imagem do Hubble

Eta Carinae e o Homúnculo, as famosas conchas de gás,o em imagem do Hubble.

Eta Carinae, o sistema estelar mais luminoso e maciço numa distância de até 10.000 anos-luz da Terra, é conhecido por seu comportamento surpreendente, tendo entrado em erupção duas vezes no século 19, por razões que os cientistas ainda não entendem. Um estudo de longo prazo liderado por astrônomos da Goddard Space Flight Center da NASA em Greenbelt, Maryland, usou satélites da NASA, telescópios terrestres e modelagem teórica para produzir o retrato mais abrangente de Eta Carinae até agora. Novas descobertas incluem imagens do Telescópio Espacial Hubble que mostram conchas de gás ionizado com década de idade, distanciando-se da maior estrela a um milhão de milhas por hora, e novos modelos 3-D que revelam características nunca antes vistas de interações das estrelas.

“Estamos começando a entender o estado atual e o ambiente complexo deste objeto notável, mas ainda temos um longo caminho a percorrer para explicar erupções passadas de Eta Carinae ou para prever seu comportamento futuro”, disse Goddard astrofísico Ted Gull, que coordena um grupo de pesquisa que acompanhou a estrela por mais de uma década.

Localizado a cerca de 7.500 anos-luz de distância, na constelação de Carina, Eta Carinae compreende duas estrelas massivas cujas órbitas excêntricas fazem as duas estrelas se aproximarem muito a cada 5,5 anos. Ambas produzem poderosos ventos estelares, que encobrem as estrelas e dificultam os esforços para medir diretamente as suas propriedades. Astrônomos estabeleceram que a estrela primária, mais brilhante e mais fria, tem cerca de 90 vezes a massa do sol e o supera em brilho em 5 milhões de vezes. Já as propriedades de sua companheiro menor, mais quente, são mais controversas. Gull e seus colegas acreditam que a estrela tem cerca de 30 massas solares e emite um milhão de vezes a luz do Sol.

No periastro (momento em que as estrelas ficam mais próximas) as estrelas ficam a 225 milhões de quilômetros de distância, ou como a distância média entre Marte e do sol. Astrônomos observam mudanças dramáticas no sistema durante os meses antes e depois do periastro que incluem erupções de raios-X, seguido por um declínio súbito e subsequente recuperação dessas emissões; o desaparecimento e reaparecimento de estruturas perto as das estrelas, detectadas em comprimentos de onda específicos da luz visível; e até mesmo um jogo de luz e sombra à medida que a menor orbita a primária.

Durante os últimos 11 anos, ao longo de três passagens do periastro o grupo Goddard desenvolveu um modelo baseado em observações de rotina das estrelas usando telescópios terrestres e vários satélites da NASA. “Nós usamos observações passadas para construir uma simulação de computador, o que nos ajudou a prever o que queremos ver durante o próximo ciclo, e então alimentar novas observações de volta para o modelo, para refinar mais isso”, disse Thomas Madura, um Fellow do Programa de Pós-Doutorado na NASA Goddard e um teórico da equipe de Eta Carinae.

De acordo com este modelo, a interação dos dois ventos estelares é responsável por muitas das alterações periódicas observadas no sistema. Os ventos de cada estrela têm marcadamente diferentes propriedades: espesso e lento para a primária, tênue e rápido para a companheira mais quente. O vento que sopra da primária em cerca de um milhão mph e é especialmente denso, levando embora uma massa equivalente a do nosso Sol a cada mil anos. Em contrapartida, o vento da companheira expele cerca de 100 vezes menos material do que a primária, mas até seis vezes mais rápido.

Simulações que foram realizadas por Madura no supercomputador Plêiades no Ames Research Center da NASA revelam a complexidade da interação dos ventos. À medida que a estrela companheira orbita rapidamente em torno da primária, o vento mais rápido esculpe uma cavidade espiral no fluxo da estrela maior. Para visualizar melhor essa interação, Madura converteu as simulações de computador para modelos 3-D digital e fez versões sólidas, utilizando uma impressora consumidor da classe 3-D. Este processo revelou saliências semelhantes a dedos ao longo das bordas da cavidade durante o periastro, características que não tinham sido notadas antes.

“Achamos que estas estruturas são reais e que se formam como resultado de instabilidades no fluxo nos meses em torno da maior aproximação”, disse Madura. “Eu queria fazer cópias 3-D das simulações para melhor visualizá-las, o que acabou por ser muito mais bem sucedido do que eu imaginava.

A equipe detalhou algumas observações importantes que expõem alguns dos funcionamentos internos do sistema. Durante os últimos três periastros, telescópios terrestres no Brasil, Chile, Austrália e Nova Zelândia monitoraram um único comprimento de onda da luz azul emitida por átomos de hélio que perderam um único elétron. De acordo com o modelo, a emissão das faixas de hélio dá pistas sobre os ventos da estrela primária. The Space Imaging Telescope Spectrograph (STIS) a bordo do Hubble, capta um comprimento de onda diferente da luz azul emitida por átomos de ferro que perderam dois elétrons, o que revela para onde o gás da estrela primária é enviado pela intensa luz ultravioleta de sua companheira. Finalmente, raios-X do sistema de transportam informações diretamente da zona de colisão dos ventos, onde os ventos contrários criam ondas de choque que aquecem o gás a centenas de milhões de graus.

Nesta simulação de um supercomputador as estrelas de Eta Carinae são mostradas como pontos pretos. Cores mais claras indicam maiores densidades nos  ventos solares produzidos por cada estrela. Na maior aproximação, o vento rápido da estrela menor cava um túnel na maior.  Cred: NASA's Goddard Space Flight Center/T. Madura
Nesta simulação de um supercomputador
as estrelas de Eta Carinae são mostradas como pontos pretos. Cores mais claras indicam maiores densidades nos ventos solares produzidos por cada estrela. Na maior aproximação, o vento rápido da estrela menor cava um túnel na maior.
Cred: NASA’s Goddard Space Flight Center/T. Madura

“Mudanças nos raios-X são como uma sonda direto da zona de colisão e mostram mudanças na forma como estas estrelas perdem massa”, disse Michael Corcoran, um astrofísico da Associação de Universidades de Pesquisa Espacial sediada em Columbia, Maryland. Ele e seus colegas compararam as emissões dos periastros medidos ao longo dos últimos 20 anos. Em julho de 2014, quando as estrelas foram em direção uma da outra, o Swift observou uma série de explosões que culminaram na mais brilhante emissão de raios-X já vista em Eta Carinae. Isso implica uma mudança na perda de massa por uma das estrelas, mas os raios X por si só não pode determinar de qual delas.

Em 2009, cientistas separaram a luz das estrelas num espectro semelhante a um arco-íris o que revelou a composição química do ambiente, mas o espectro também mostrou estruturas delgadas perto das estrelas, que sugeriram o instrumento poderia ser utilizado para mapear uma região perto do sistema binário em detalhes nunca antes vistos.

Desde dezembro de 2010, a equipe de Gull tem regularmente mapeado uma região centrada no sistema binário através da captura de espectros em 41 locais diferentes. A visão se estende por cerca de 670.000.000 mil km, ou cerca de 4.600 vezes a distância média Terra-Sol.

As imagens resultantes, reveladas pela primeira vez no início de janeiro de 2015, mostram que a emissão de ferro duplamente ionizado vem de uma estrutura gasosa complexa com quase um décimo de ano-luz de diâmetro, que Gull compara ao caranguejo azul de Maryland. Percorrendo as imagens, vastos reservatórios de gás, que representariam as “garras” do caranguejo podem ser vistas ao longo das estrelas com velocidades medidas em cerca de 1,6 milhões kmh. A cada aproximação, uma cavidade forma-se uma cavidade no vento da estrela maior que depois se expande para fora , criando as conchas móveis.

“Essas conchas de gás se estendem ao longo de milhares de vezes a distância entre a Terra e o sol”, explicou Gull. “Ao investigarmos seu passado, descobrimos que as conchas começaram a se mover para longe da estrela primária há cerca de 11 anos ou três periastros atrás, proporcionando-nos uma forma adicional de vislumbrar o que ocorreu no passado recente”.

Formação das conchas durante o periastro. NASA's Goddard Space Flight Center/T. Gull et al.
Formação das conchas durante o periastro. NASA’s Goddard Space Flight Center/T. Gull et al.

Quando as estrelas se aproximam, a companheira fica imersa na parte mais grossa do vento da primária, que absorve a luz UV e impede que a radiação atinja as conchas de gás distantes. Sem essa energia para exitá-lo, o ferro duplamente ionizado deixa de emitir luz e a estrutura de caranguejo desaparece neste comprimento de onda. À medida que a companheira oscila em torno da primária e limpa o vento mais denso,  a luz UV escapa, re-energiza os átomos de ferro nas conchas, e o caranguejo volta.

A seguir o vídeo que sintetiza o texto acima.

29
ago
14

Um novo modelo de SN tipo IA é proposto.

O site científico Scitechdaily publicou um artigo que fala de um novo modelo proposto para as Supernovas tipo IA . O tema é fascinante e se o modelo for confirmado esse tipo de Supenova pode não mais ser considerada uma vela padrão. O artigo original que traduzi e adaptei está aqui. http://scitechdaily.com/new-supernova-model-challenges-predominant-one/ O paper do estudo pode ser acessado aqui

New-Observations-of-the-Type-Ia-SN-2014J-in-Galaxy-M82

Um estudo recém-publicado pelo Instituto de Astrofísica da Andaluzia descarta a possibilidade de que supernovas do tipo Ia possam ser resultado de explosões de anãs brancas alimentadas por estrelas normais. Se estas conclusões se generalizarem, supernovas do Tipo Ia poderão não servir mais como “velas padrão”  (standard candles) para medir distâncias astronômicas.

 

Supernovas do Tipo Ia acontecem quando uma anã branca, o “cadáver” de uma estrela parecida com o Sol, absorve material de uma estrela gêmea até que atinja uma massa crítica de 1,4 vezes a massa do Sol e exploda. Por causa de sua origem, todas estas explosões compartilham de uma luminosidade muito semelhante. Esta uniformidade fez das supernovas do Tipo Ia objetos ideais para medir distâncias no universo, mas o estudo da supernova 2014J sugere um cenário que as invalidaria como “velas padrão”.

 

“Supernovas Tipo Ia são consideradas velas padrão, pois sua constituição é muito homogênea e praticamente todas elas atingem a mesma luminosidade máxima. Elas ainda nos permitiram descobrir que o universo estava se expandindo a um ritmo acelerado. No entanto, nós ainda não sabemos que  sistemas estelares dão origem a este tipo de supernovas “, diz Miguel Ángel Pérez Torres, pesquisador do Instituto de Astrofísica da Andaluzia (IAA-CSIC) encarregado do estudo.

Um novo modelo que postula a fusão de duas anãs brancas está agora desafiando o modelo predominante, composto por uma anã branca e uma estrela normal. O novo cenário não implica a existência de um limite máximo de massa e, portanto, não necessariamente produz explosões de luminosidade semelhante.

Type-Ia-Supernovae-Stem-from-the-Explosion-of-White-Dwarfs-Coupled-with-Twin-Stars

Os resultados mencionados acima foram obtidos a partir do estudo da supernova 2014J, situada a 11,4 milhões de anos-luz de distância do nosso planeta, usando as redes EVN e e MERLIN de radiotelescópios. “É um fenômeno que muito raramente ocorre em nosso universo imediato. 2014J é a supernova tipo IA  mais próxima de nós desde 1986, quando os telescópios eram muito menos sensíveis, e pode muito bem ser a única que vai ser capaz de ser  observada em tais vizinhanças nos próximos 150 anos “, diz Pérez Torres (IAA-CSIC).

 

A observação por Radio torna possível revelar que  sistemas estelares estão por trás de supernovas tipo Ia. Se a explosão procede de uma anã branca que está sendo alimentada por uma estrela dupla, por exemplo, uma grande quantidade de gás deve estar presente no ambiente; Após a explosão, o material ejetado pela supernova irá colidir com este gás e produzir uma intensa emissão de raios X e ondas de rádio. Por outro lado, um par de anãs brancas não irá gerar este envelope gasoso e, por conseguinte, não haverá emissão de raios X, quer ou ondas de rádio.

 

“Nós não detectamos emissões de rádio em SN 2014J, o que favorece o segundo cenário”, diz Pérez Torres. “Se esses resultados ganharem aceitação geral, as consequências cosmológicas seriam de peso, porque o uso de supernovas do tipo Ia para medir distâncias seria questionada”, conclui o pesquisador.

 

Publicação:. MA Pérez-Torres, et al, “restrições no sistema progenitor e os arredores de SN 2014J a partir de observações de rádio profundas”, APJ, 2014, 792, 38; doi: 10.1088 / 0004-637X / 792/1/38

 

12
jun
14

Explosões gigantescas enterradas em poeira | ESO Brasil

Explosões gigantescas enterradas em poeira | ESO Brasil.

12
jun
14

NGC7793: Buraco Negro alimenta grandes bolhas de gás

 

O Chandra anunciou a descoberta de um microquasar em NGC 7793, uma galáxia na direção da galaxia do Escultor. Nesse sistema um buraco negro é alimentado por uma estrela companheira. O buraco negro no microquasar está gerando dois jatos poderosos que estão criando gigantescas bolhas de gás quente.

O texto original está em http://chandra.si.edu/photo/2010/ngc7793/. O texto foi traduzido e adaptado para o português brasileiro.

A galaxy about 12.7 million light years away containing a so-called microquasar.

Esta imagem composta mostra um poderoso  microquasar  que contém um buraco negro na periferia da galáxia NGC 7793 (12,7 milhões de anos-luz) . A grande imagem contém dados do Observatório de Raios-X Chandra em dados vermelhos, verdes e azuis, ópticas da Very Large Telescope em azul claro, e de emissão óptica por hidrogênio (“H-alfa”)  do telescópio  CTIO 1,5 m em dourado.

A inserção superior mostra um close-up da imagem de raios-X do microquasar, que é um sistema que contém um buraco negro de massa estelar sendo alimentado por uma estrela companheira. Um turbilhão de gás que vai em direção ao buraco negro forma um disco ao redor dele. Campos magnéticos retorcidos no disco geram fortes forças eletromagnéticas que impulsionam parte do gás para longe do disco em alta velocidade em dois jatos, criando uma enorme bolha de gás quente de cerca de 1.000 anos-luz de diâmetro. A fonte de verde / azul fraco perto do meio da imagem ampliada superior corresponde à posição do buraco negro, enquanto as fontes em vermelho/ amarelo (canto superior direito) e amarelo (inferior esquerdo) correspondem aos pontos onde os jatos estão imersos no gás circundante  aquecendo-o. A nebulosa produzida pela energia dos jatos é claramente vistana imagem H-alfa mostrado na inserção inferior.

n7793_xray_labeled_525

Os jatos no microquasar de NGC 7793 são os mais poderosos já vistos de um buraco negro de massa estelar e os dados mostram que uma quantidade surpreendente de energia do buraco negro está sendo levada pelos jatos, mais do que pela radiação a partir do material que está sendo injetado. O poder dos jatos é estimado em ser cerca de dez vezes maior do que o dos mais poderosos vistos a partir do famoso microquasar em nossa própria galáxia, SS433. Este sistema em NGC 7793 é uma versão em miniatura de quasares poderosos e de rádio galáxias, que contêm buracos negros que variam de milhões a bilhões de vezes a massa do sol.

Um artigo descrevendo este trabalho foi publicado em 8 de julho de 2010, da revista Nature. Os autores são Manfred Pakull da Universidade de Strasbourg, na França, Roberto Soria, do University College London, e Christian Motch, também da Universidade de Estrasburgo.

Crédito de imagens: X-ray (NASA/CXC/Univ of Strasbourg/M. Pakull et al); Optical (ESO/VLT/Univ of Strasbourg/M. Pakull et al); H-alpha (NOAO/AURA/NSF/CTIO 1.5m)