Archive for the 'Sistema Solar' Category

24
jun
16

Encontrada evidencia de formação de cometas em TW Hydrae

O estudo de discos protoplanetários tem sido uma importante arma para o entendimento da formação de sistemas extra-solares e consequentemente para melhor entendimento da formação de nosso próprio sistema. Assim, é fácil perceber a relevância da constatação de formação cometária no disco protoplanetário de TW Hydrae. Esse é o tema do artigo da Astronomy now que adaptei e traduzi para o português brasileiro. O link para o texto original pode ser acessado aqui e o paper científico aqui

A ilustração artística mostra o disco protoplanetário  em torno da estrela TW Hydrae na enorme constelação de Hydra . Crédito da ilustração: ESO / M. Kornmesser.

A ilustração artística mostra o disco protoplanetário em torno da estrela TW Hydrae na enorme constelação de Hydra . Crédito da ilustração: ESO / M. Kornmesser.

Astrônomos acabam de anunciar que encontraram  a molécula orgânica metanol, no disco protoplanetário de TW Hydrae. Este é o primeiro tipo de detecção deste composto químico em um disco de formação planetária jovem. Como o metanol se forma sobre os revestimentos gelados de pequenos grãos de poeira, esta descoberta fornece uma pista para a região onde os cometas são provavelmente formados.

 

“Quando olhamos para vapor de metanol no disco de TW Hydrae, estamos sondando os precursores dos exo-cometas”, diz o co-autor do estudo Karin Oberg do Centro Harvard-Smithsonian de Astrofísica (CfA).

 

O disco protoplanetário em torno da jovem estrela TW Hydrae é o exemplo mais próximo da Terra, a uma distância de apenas cerca de 175 anos-luz. Como tal, é um alvo ideal para os astrônomos estudarem discos em detalhe. Este sistema tem cerca de 10 milhões de anos, e assemelha-se ao nosso sistema solar há mais de quatro bilhões de anos atrás.

 

A equipe fez a detecção usando o Large Array Atacama milímetro / submilimétricos (ALMA) – o mais poderoso observatório para mapear a composição química e a distribuição de gás frio em discos próximos.

 

As observações ALMA revelaram a impressão digital de álcool metílico gasoso, ou metanol (CH3OH), em um disco protoplanetária pela primeira vez. Metanol, um derivado de metano, é uma dos maiores complexos orgânicos moleculares detectados em discos, até à data. Identificar a sua presença representa um marco para a compreensão de como as moléculas orgânicas são incorporados em planetas nascentes.

 

Além disso, o metanol é em si um bloco de construção para produtos químicos mais complexos, como aminoácidos e açúcares. Como resultado, o metanol desempenha um papel vital na criação da rica química orgânica tão necessária para a vida.

 

Catherine Walsh (Observatório de Leiden, Países Baixos), principal autora do estudo que aparece no Astronomical Journal, explica: “Encontrar metanol em um disco protoplanetário mostra a capacidade única de ALMA para sondar o complexo reservatório de gelo orgânico em discos e assim,  pela primeira vez, permite-nos olhar para trás no tempo, para a origem da complexidade química em um berçário de planetas em torno de uma jovem estrela semelhante ao Sol “.

 

A observação de metanol na fase gasosa implica que o metanol se formou em grãos de gelo do disco e posteriormente foi vaporizado. Esta primeira observação ajuda a esclarecer o enigma da transição de gelo / gás metanol, e mais geralmente os processos químicos em ambientes astrofísicos.

 

O co-autor CfA Ryan A. Loomis acrescenta: “O metanol na forma gasosa do disco é um indicador inequívoco de ricos processos químicos orgânicos numa fase precoce da estrela e da formação planetária. Este resultado tem um impacto na nossa compreensão de como a matéria orgânica se acumula nos sistemas planetários muito jovens “.

24
jun
16

Hubble confirma tempestade em Netuno

Tempestades são comuns nos planetas gasosos do nosso Sistema Solar; são ventos em alta velocidade que formam lindas manchas na atmosfera desses planetas. Elas aparecem e desaparecem de tempos em tempos e intrigam astrônomos planetários. No dia 16 de maio de 2016, o  telescópio Hubble confirmou a existencia de uma mancha escura em Netuno. A confirmação propiciará muito estudo e novidades sobre o lindo planeta azulado.

Abaixo o texto do site do Hubble sobre o assunto, adaptado e traduzido para o português brasileiro. O texto original pode ser acessado aqui

Netuno dark spot 

 

Novas imagens obtidas em 16 de maio de 2016, pelo Telescópio Espacial Hubble da NASA confirmam a presença de um vórtice escuro na atmosfera de Netuno. Apesar de características semelhantes terem sido vistas durante o sobrevoo por Netuno feito pela Voyager 2 em 1989 e pelo Telescópio Espacial Hubble em 1994, este vórtice é o primeiro observado em Netuno, no século 21.

 

A descoberta foi anunciada em 17 de maio, 2016 pelo astrônomo pesquisador Mike Wong, da Universidade da Califórnia em Berkeley, que liderou a equipe que analisou os dados do Hubble.

 

Os vórtices escuros de Netuno são sistemas de alta pressão que e são geralmente acompanhadas de “nuvens companheiras” brilhantes, que agora também são visíveis no planeta distante. As nuvens brilhantes formam-se quando o fluxo de ar ambiente é perturbado e desviado para cima sobre o vórtice escuro, fazendo com que os gases congelem em cristais de gelo de metano. ” Vórtices escuros costeiam a atmosfera como enormes, montanhas gasosas em forma de lente”, disse Wong. “E as nuvens companheiras são semelhantes as chamadas nuvens orográficas que aparecem em forma de panqueca se estendendo sobre montanhas na Terra.”

 

A partir de julho de 2015, nuvens brilhantes foram novamente vistas em Neptune por vários observadores, de amadores a astrônomos do Observatório W. M. Keck, no Havaí. Os astrônomos suspeitaram que estas nuvens poderiam ser nuvens companheiras brilhantes acompanhando um vortex escuro invisível.  Os vórtices escuros de Netuno são normalmente apenas vistos em comprimentos de onda azuis, e só Hubble tem a alta resolução necessária para vê-los em Netuno.

 

Em setembro de 2015, o programa Outer Planeta Atmospheres Legacy (OPAL), um projeto do Telescópio Espacial Hubble de longo prazo que capta anualmente mapas globais dos planetas exteriores, revelou uma mancha escura perto da localização das nuvens brilhantes, que havia sido monitorado a partir do chão. Ao ver o vórtice uma segunda vez, as novas imagens do Hubble confirmam que OPAL realmente detectara uma estrutura de longa duração. Os novos dados permitiram que a equipe criasse um mapa do vórtice e seus arredores de melhor qualidade.

 

Os vórtices escuros de Netuno têm demonstrado surpreendente diversidade ao longo dos anos, em termos de tamanho, forma e estabilidade (que serpenteiam em latitude, e às vezes aceleraram ou desaceleraram). Eles também vêm e vão  em escalas de tempo muito mais curtos em comparação com anticiclones similares vistos em Júpiter; grandes tempestades em Júpiter evoluem ao longo de décadas.

 

Astrônomos planetários esperam entender melhor como vórtices escuros se originam, o que controla seus desvios e oscilações, como interagem com o ambiente, e como eventualmente se dissipam, diz o doutorando Joshua Tollefson  da Universidade de Berkeleym . Medir a evolução do novo vórtice escuro vai ampliar o conhecimento dos vórtices escuras, bem como da estrutura e dinâmica da atmosfera circundante.

20
jun
14

O que são satélites naturais?

 

Satélite é todo corpo celestial que orbita outro corpo celestial maior. Podemos chamar uma galáxia de galáxia satélite quando orbita uma galáxia maior por exemplo. Veja abaixo:

Mas normalmente quando falamos de satélites naturais estamos nos referindo aos  que também  chamamos de “lua” , como aqueles que orbitam os planetas, planetas-anões e pequenos corpos de nosso Sistema Solar.

Classificação dos Satélites.

Os Satélites podem ser classificados por tamanho e de acordo com sua formação.

Tamanho:

Satélites GRANDES são aqueles que tem raio superior a 1500 km, como Ganimedes e Titã,.

Satélites INTERMEDIÁRIOS são aqueles que tem raio variando entre 400 km e 1500 km, como Titania.

Satélites PEQUENOS são aqueles que tem raio inferior q 400 km, como Deimos e Phobos.

Formação:

Satélites Regulares: Chama-se de regular o satélite que foi formado ao mesmo tempo que o planeta, da mesma forma que o sistema foi formado. Esse tipo de satélite apresenta órbitas com pouca excentricidade e inclinações pequenas.

Satélites Irregulares: Chama-se de Irregular o satélite que foi capturado pelo campo gravitacional do planeta e não se formou ao mesmo tempo que o planeta que orbita. Esse tipo de satélite apresentam grande excentricidade e inclinação.

Principais satélites naturais do Sistema Solar

 

Asteroide Ida e seu satélite.

Asteroide Ida e seu satélite.

Io e Ganimedes orbitando Júpiter em foto de Damian Peach.

Io e Ganimedes orbitando Júpiter em foto de Damian Peach.

 

 

Nossa Lua, o satélite natural da Terra. Credito: Roger Brooker.

Nossa Lua, o satélite natural da Terra. Credito: Roger Brooker.

22
fev
14

Telescópio Subaru detecta tipo raro de nitrogênio no cometa Ison

Os cometas trazem informações preciosas sobre a origem do Sistema Solar. O artigo abaixo é um release do telescópio Subaru e embora seja mais técnico do que normalmente publico, achei pertinente traduzí-lo e adaptá-lo pelo tópico em si e por se relacionar à espectroscopia, ramo ao qual me dedico. O texto original pode ser acessado aqui

Cometa Ison pelas lentes do incrível Damian Peach em Nov_13
Cometa Ison pelas lentes do incrível Damian Peach em Nov_13

Uma equipe de astrônomos, liderada por Yoshiharu Shinnaka e Hideyo Kawakita, ambos da Kyoto Sangyo University, observou com sucesso a Comet ISON durante sua explosão brilhante no meio de novembro de 2013. O espetrógrafo de alta dispersão do Telescópio Subaru (HDS) detectou duas formas de nitrogênio – 14NH2 e 15NH2 – no cometa. Esta é a primeira vez que astrônomos relataram uma clara detecção do isótopo 15NH2 relativamente raro num único cometa e também mediram a abundância relativa de duas formas diferentes de isótopos (“razão isotópica de nitrogênio”) de amoníaco cometário (NH3) (Figura 1 ). Os resultados apoiam a hipótese de que havia dois reservatórios distintos de nitrogênio, na nuvem densa (“nebulosa solar”) a partir do qual o nosso Sistema Solar podem ter se formado e evoluído.

Figura 1: Close-up de espectros de linhas de emissão NH2 (das mesmas transições tanto para 14NH2 e 15NH2) no Cometa ISON, mostrando a diferença de comprimentos de onda e intensidade relativa entre os isótopos. As linhas vermelhas e verdes-tracejadas indicam o espectro observado. A linha azul indica o 15NH2, claramente detectado pela primeira vez. (Crédito: NAOJ)
Figura 1: Close-up de espectros de linhas de emissão NH2 (das mesmas transições tanto para 14NH2 e 15NH2) no Cometa ISON, mostrando a diferença de comprimentos de onda e intensidade relativa entre os isótopos. As linhas vermelhas e verdes-tracejadas indicam o espectro observado. A linha azul indica o 15NH2, claramente detectado pela primeira vez. (Crédito: NAOJ)

Por que a equipe se concentrou em estudar estas diferentes formas de nitrogênio no cometa?

Os cometas são objetos relativamente pequenos  do Sistema Solar , compostos de gelo e poeira , que se formaram há 4,6 bilhões de anos na nebulosa solar , quando o nosso sistema solar estava em sua infância . Como eles geralmente residem em regiões frias longe do Sol, o cinturão de Kuiper e a Nuvem de Oort , eles provavelmente preservam informações sobre as condições físicas e químicas no início do Sistema Solar . Diferentes formas e abundâncias da mesma molécula fornecem informações sobre sua origem e evolução.  Os cometas pertenciam a um berçário estelar (a nuvem interestelar primordial) ou surgiram a partir de uma nuvem distinta , a nebulosa solar, que pode ter formado a estrela do nosso sistema solar , o Sol ? Os cientistas ainda não entendem muito bem como as moléculas cometárias se separam em isótopos com diferentes abundâncias . Isótopos de nitrogênio de amônia (NH3) podem ser a chave para essa questão .

O amoníaco ( NH3 ) é uma molécula particularmente importante , uma vez que é o mais volátil de nitrogênio mais abundadnte  em gelo cometário e uma das moléculas mais simples de um grupo amino ( – NH2 ) intimamente relacionado com a vida . Isso significa que essas diferentes formas de nitrogênio poderiam ligar os componentes do espaço interestelar com a vida na Terra como a conhecemos.
Como a amônia é o principal transportador de nitrogênio em um cometa, é necessário limpá-la a partir da abundância relativa de seus isótopos para entender como 15NH2  se separa em moléculas cometárias. No entanto, a detecção direta de amônia cometária é difícil, e existem apenas alguns relatos de sua detecção. Portanto, a equipe se concentrou em estudar a forma de NH2 desenvolvido após a amônia ter sido discriminada pela luz (“fotodissociação”) no coma de cometas. A equipe teve a sorte de observar o cometa ao se aproximar do Sol, quando a sua composição gelada foi evaporando. Eles também tiveram a sorte porque NH2, um derivado de amônia (NH3), é fácil de observar no comprimento de onda óptico, e a abundância relativa de isótopos de nitrogênio de amônia cometária é provavelmente próximo ao de NH2.

A equipe usou HDS Telescópio Subaru para observar com sucesso o Cometa ISON em 15 de novembro e 16 (UT) , quando o cometa teve sua explosão brilhante que começou no dia 14 de novembro. A observação detectou claramente 15NH2 no Cometa ISON , e a equipe inferiu que a proporção de amônia cometária de 14N/15N é consistente com a média  dos espectros de outros 12 cometas . Em outras palavras , O Cometa ISON é típico na sua abundância relativa de 14N/15N em amoníaco cometário.

Estes resultados suportam a hipótese de que havia dois reservatórios distintos de nitrogênio na nebulosa solar :

1) de gás N2 primordial com um valor protosolar de 14N/15N ,

2) de  moléculas menos voláteis e, provavelmente, sólidas com uma proporção de cerca de 14N/15N  na nebulosa solar.

Figura 2: Comparação de proporções de isótopos obtidas a partir de cometas (esquerda) e núcleo da nuvem molecular (direita). A linha azul indica a proporção de isótopos de nitrogênio na atmosfera da Terra, enquanto a linha amarela mais larga indica a da nebulosa proto-solar. A figura mostra que os isótopos obtidos a partir de moléculas cometárias são semelhantes uns aos outros, enquanto aqueles enquanto aqueles de HCN (cianeto de hidrogénio) e HN3 (amoníaco) no núcleo da nuvem molecular são diferentes. (Crédito: NAOJ)de HCN (cianeto de hidrogénio) e HN3 (amoníaco) no núcleo da nuvem molecular são diferentes.
Figura 2: Comparação de proporções de isótopos obtidas a partir de cometas (esquerda) e núcleo da nuvem molecular (direita). A linha azul indica a proporção de isótopos de nitrogênio na atmosfera da Terra, enquanto a linha amarela mais larga indica a da nebulosa proto-solar. A figura mostra que os isótopos obtidos a partir de moléculas cometárias são semelhantes uns aos outros, enquanto aqueles enquanto aqueles de HCN (cianeto de hidrogénio) e HN3 (amoníaco) no núcleo da nuvem molecular são diferentes. (Crédito: NAOJ)de HCN (cianeto de hidrogénio) e HN3 (amoníaco) no núcleo da nuvem molecular são diferentes.

Isso pode significar que o amoníaco se formou em um ambiente de uma superfície de poeira de baixa temperatura , não no gás da nuvem molecular. As experiências de laboratório mostram que várias moléculas complexas podem se formar sobre a superfície de poeira de baixa temperatura. Se a molécula de amoníaco se formou sobre a superfície de poeira de baixa temperatura, o núcleo de cometa pode conter uma molécula complexa que se relaciona com a origem da vida, em adição ao amoníaco. Se for assim, aumentam as possibilidades de que cometas tenham trazido esses materiais para a Terra.

No futuro a equipe espera  investigar a origem do Cometa ISON e os mecanismos que provocaram sua explosão para que possamos entender melhor a evolução do Sistema Solar.

Referências:

Resultados publicados em Fevereiro 20, 2014 como:

Shinnaka, Y., Kawakita, H., Kobayashi, H., Nagashima, M., & Boice, D.C. 2014 “14NH2/15NH2 ratio in Comet C/2010 S1 (ISON) observed during its Outburst in November 2013)” Astrophysical Journal Letters, V 782, L106

“Spectrum of Outburst from Comet ISON Obtained by Subaru Telescope’s High-Dispersion Spectrograph”, December 2, 2013 Subaru Telescope press release.]

O telescópio Subaru.

Telescópio Subaru, no Havaí.
Telescópio Subaru, no Havaí.
12
fev
14

Vênus: brilho intenso nas madrugadas de fevereiro

O blog Space.com nos lembra da beleza que o brilho de Júpiter está nos proporcionando nesse mês de fevereiro.

O texto  escrito por Geoff Gaherty da Starry Night Education, está resumido e adaptado e o original pode ser acessado aqui

Vênus fotografado por Alan Friedman.

Vênus fotografado por Alan Friedman.

Normalmente o brilho de Vênus, como a maioria dos objetos no espaço, diminui quanto mais longe fica da Terra. No entanto, à medida que Vênus vai se movendo em  torno do sol, vai sendo iluminado a partir de ângulos diferentes, e isso também afeta o seu brilho.
Esta semana, a distância do planeta da Terra e seu ângulo em relação ao sol se combinam para que Vênus mostre mais de sua superfície reflexiva do que em qualquer outro ponto na órbita do sol, fazendo com que o planeta brilhe no seu máximo. Infelizmente, os observadores só podem ver Vênus em seu período mais brilhante, ao se levantar cedo pela manhã. A sua localização, a oeste do sol atual faz com que seja uma “estrela da manhã” subindo duas horas antes do sol.

A magnitude de Vênus quando está em seu período menos brilhante é de -3.8. Essa semana ele chegará a uma magnitude de – 4.9. 

O que isso significa? 

Bem, Sírius, a estrela mais brilhante no céu tem uma magnitude de 1.44. A magnitude de Vênus esta semana é portanto 3.5 vezes mais brilhante do que Sírius. 

Costumava-se dizer que Vênus era o objeto mais brilhante no céu depois do sol e da lua, mas isso já não é verdade. A Estação Espacial Internacional, com seus enormes painéis solares, agora supera Vênus por uma margem confortável. Mesmo assim, vale a pena acordar mais cedo e olhar pela janela a cada amanhecer desses dias de fevereiro.

Vênus em fase fotografado por John Chumack.

Vênus em fase, fotografado por John Chumack.

27
out
13

Cometa Lovejoy: video

Meu querido amigo John Chumack registrou em vídeo o passeio do cometa Lovejoy /2013

Estamos todos ansiosos pela passagem do ISON, cometa que promete ser o cometa do século (se sobreviver ao seu encontro com o sol, claro.) , mas o Lovejoy tem também sido um belo objeto de observação em 2013.

Cometas são objetos fantásticos  e é incrível a velocidade com a qual se deslocam como podemos constatar aqui.

No primeiro vídeo o cometa passeia pela constelação do Cão Menor.

 

Dias depois o cometa está em Leão

02
jun
13

Asteroide 1998 QE2 capturado em vídeo

O observatório Samford Valley, em Brisbaine, Austrália, registrou o asteroide 1998 QE2 em sua maior aproximação da Terra e de quebra ainda registrou um satélite e um meteorito ao mesmo tempo. Fantástica captura que compartilho com vocês.